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Fate of reactive contaminants depends on  
geochemical reactions in the subsurface. 

 
When organic contaminants are involved 
these reactions are most often biologically 

mediated.  

In complex systems, such as subsurface 
hydrogeologic environments, identifying all 

the biogeochemical reactions is difficult.



  

In order to determine which biogeochemical 
processes are most relevant we look for evidence, 
or footprints, of those processes. This can be loss 
of contaminants themselves or electron acceptors 

used during reactions or an increase in 
metabolites or end products produced during 

reactions. We look in the ground water, 
sediments, and soil gas at a range of spatial and 
temporal scales and conduct in situ experiments 

to test hypotheses.
 

                                        



  

In the subsurface biogeochemical processes that 
control contaminant fate vary in space and time and 
alter the aquifer aqueous and solid phase chemistry



  

•Electron Acceptors

    O2, NO3
-, Fe3+, Mn4+, SO4

2-, CO2, Mn(IV)s, Fe(III)s

•Electron Donors

    Organic substrate (natural or contaminant), Fe(II)s, NH4
+

•Intermediates

    H2, Organic Acids

•Reaction Products

    HCO3
-, N2O, NO3

- NH4
+, Fe2+, Mn2+, H2S, CH4, Fe(II)s

•Isotopic fractionation

δ 13C, δ 15N, δ 34S, δ D, δ 18O, δ 37Cl

Geochemical Indicators of Biodegradation 
Processes



  

Geochemical Indicators of Biodegradation 
Processes

In assessing the dominant biogeochemical 
reactions in a subsurface environment 

contaminated with organic or mixed waste 
our experience at numerous field sites has 

shown us we need to consider many sources 
of these indicators including:

 1. The aquifer solids

2. Water from outside the plume

3. Co-contaminants within the plume
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Biogeochemical Processes that Control Contaminant 
Fate are Influenced by the Complexity of the System



  

We also need to understand the role of the 
microorganisms in the system and the feedback 

between the geochemical environment and 
microbial activity. 

 
The value of long-term studies, such as those 

done at Toxics sites, is that we can track changes 
in the source of contamination and biogeochemical 

processes over time as reactions at these sites 
progress, making us better able to make informed 

choices about what we may need to look for at 
other sites. 



  

Some Key Lessons Learned at Toxics Sites when 
Identifying Controlling Biogeochemical Processes 
Relevant to Contaminant Fate:

• Changes over time in aquifer geochemistry can control 
progress of reactions and in evaluating these changes it is 
essential to consider the solid phase

• Reactions at plume fringes and interfaces are especially 
important because these are often areas of chemical 
exchange

• Feedback between the geochemistry and in situ microbial 
community impacts potential for future biodegradation 
reactions



  

Example #1: 
Bemidji Crude Oil 
Spill

Crude oil infiltrated 
the subsurface and 
oil was found in 
water table wells  



  

Monitoring wells were used for plume-scale 
observations. Smaller-scale samples were 
collected by extracting pore water from 

cores
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The plume-scale observations were combined with cm-
scale geochemical and microbial studies, revealing 

narrow redox zones that evolve over time on the scale 
of years to decades.

Bekins et al., Cozzarelli et al., JCH, 2001
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Cozzarelli et al. JCH (2001)

Changes Over Time: By looking at the cm scale we found the 
plume is growing- ethylbenzene and ortho-xylene at edge of 

anoxic zone
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Importance of solid phase Fe(III)s:
By looking at the sediment Fe at this same scale we could see 

the shift in redox state of the Fe from oxidized to reduced 
form

Cozzarelli et al. JCH (2001)



  

Relationship between 
microbes and minerals:

 Fe (III)s continues to be 
depleted at 65 m  

Fe-reducer MPN’s also 
decreased at 65 m from 

1997-2006
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Example #2: 
Municipal 
Landfill

 Norman, OK

Landfill accepted unrestricted solid waste- 
closed in 1985

 covered with clay and vegetation

The plume intersects a 
wetland



  

Next Two Slides Show Temporal Changes in 
Geochemistry along the A-A’ transect.

An anoxic plume 
containing high 

concentrations of DOC, 
chloride, ammonium, 
and other organic and 
inorganic species is 

migrating south 
underneath a wetland 

and toward the 
Canadian River.

Cozzarelli et al., ES&T, 
2000
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The zone of high sulfate downgradient is shrinking as the plume 
spreads. The Sulfate depleted plume center is expanding as 

degradation reactions progress.
Barite dissolution provides a 

source of sulfate in low sulfate zones
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Water levels in the contaminant plume fluctuate over 2 
meters

Sulfate infiltrates at this plume fringe
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Leachate-
containing 

groundwater 
discharges to 

the slough 
along the 

northeast bank 
and slough 

water 
recharges the 
aquifer along 
the southwest 

bank. 



  

Presence of a discharge site 
(the slough) presents an 

opportunity to look at possible 
changes in important 

geochemical processes that 
impact contaminant fate. At 

this interface enhanced 
biogeochemical reactions are 

expected to occur.
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Small-scale 
samples for 

geochemistry 
are collected 

using peepers



  

Norman Landfill

Ammonium Isotopes

(1) Increasing δ15N with 
decreasing ammonium 
indicates ammonium 
oxidation (nitrification)

(2) Decreasing δ15N with 
decreasing ammonium 
indicates ammonium 
sorption

(1)(1)

(2)(2)

Lorah et al., JCH 
(2008)



  

Norman Landfill

Attenuation Rates

          Multilevel Wells                            Peepers

Slope  = λ, first-order attenuation rate constant with distance 
across the slough (m-1), normalized to chloride 

• Ammonium attenuation 
rate in the aquifer was 
about 67% higher than 
in the slough porewater

• Ammonium and 
potassium attenuation 
rate constants the same 
in aquifer and wetland 
indicating that sorption 
rather than 
biogeochemical 
processes was 
responsible for the 
attenuation of the 
ammonium plume

Lorah et al. JCH (2008)



  

Microbial Incubations and Geochemical Analyses 
are used to Map the Biogeochemical Zones
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Microbial Incubations and Geochemical Analyses were 
used to Understand the Evolution of the 

Biogeochemical Zones
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Example #3: Cape Cod Wastewater Plume

Plume was created by 
60 years of disposal of 

treated sewage.  



  

Ground Water Contaminant Plume on Cape Cod
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After Cessation: 

The conservative 
tracer, B, has 

flushed through 
the aquifer 

quickly

  Dissolved 
oxygen has not 
mixed with the 

anoxic plume due 
to reaction with 
electron donors 

left behind on the 
solids

NH4 plume 
remediation is 

slower than 
expected



  

Future direction:
Coupling geochemistry 

and microbiology

 Measuring 
biogeochemical processes 

and gene expression 
using GeoChip technology 

at Norman



  

Gene category No. of gene 
categories 

No. of 
downloade
d sequences 

No. of 
sequences for 
probe design 

Total no. 
of probes 
designed 

Total no. 
of CDS 
covered 

Carbon degradation 24 18337 4092 1924 3192 

Carbon fixation 5 4682 2218 887 1614 

Methane reduction and 
oxidation 

3 4134 1853 447 752 

Metal resistance and 
reduction 

43 28820 9625 3510 7021 

Nitrogen cycling 12 20800 19229 4006 7334 
Organic remediation 197 55598 18650 7093 12843 
Phosphorus utilization 2 1876 1441 471 1069 
Sulfur cycling 3 2523 2291 1464 1800 
Energy process 2 2838 879 416 450 
Others (e.g. gyrB) 1 8163 5252 1040 2089 

Total 292 147,771 65,530 21,258* 38,164 

 
 

Summary of GeoChip probe and 
sequence information by category

New version covers >47,000 gene sequences of 290 gene families



  

The importance of the role of microorganisms in 
the reduction or oxidation of organic 

contaminants in the subsurface is well 
established

Investigators understand the importance of 
coupling geochemical measurements with 

microbial studies, but much work needs to be 
done to understand the feedback between 

microbial activity and geochemical conditions, 
including the time frame and spatial scale
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